Name:

Exploration 13-3a: Intersections of Polar Curves

Objective: Plot polar curves on your grapher, and determine which intersection points represent solutions to the system of equations.

The figure shows

- The limaçon $r_{1}=3+2 \cos \theta$
- The rose $r_{2}=5 \sin 2 \theta$

1. Plot the two graphs on your grapher. Use degrees, simultaneous mode, and a fairly small θ-step so that the graphs plot relatively slowly. Pause the plotting when the graphs reach the intersection point P_{1}. Approximately what does θ equal at this point?
2. Resume the plotting, and then pause it again at the θ-value corresponding to point P_{2} on the limaçon. Where is the point on the rose for this value of θ ? Explain why P_{2} is not a solution to the system of equations.
3. Continue the graphing until a complete 360° has been plotted. Which of the intersections in the figure are solutions to the system of equations and which are not? What do you notice about the r-values on the rose for the points that are not solutions?
4. With your grapher in function mode, plot the auxiliary Cartesian graphs

$$
\begin{aligned}
& y_{1}=3+2 \cos \theta \\
& y_{2}=5 \sin 2 \theta
\end{aligned}
$$

Sketch the result.

5. Solve numerically to find the first two positive values of θ where the graphs in Problem 4 intersect. Show that these correspond to two of the points where the polar graphs intersect.
6. Show on the auxiliary graphs in Problem 4 that a second-quadrant angle θ for point P_{2} corresponds to a solution to the limaçon equation but not to a solution to the rose equation.
7. What did you learn as a result of doing this Exploration that you did not know before?

