KCOE CaMSP Grant
CCSSM Standards for Mathematical Practice

1 Make sense of problems and persevere in solving them.

Mathematically proficient students start by explaining to themselves the meaning of a problem and looking for
entry points to its solution. They analyze givens, constraints, relationships, and goals. They make conjectures
about the form and meaning of the solution and plan a solution pathway rather than simply jumping into a solution
attempt. They consider analogous problems, and try special cases and simpler forms of the original problem in
order to gain insight into its solution. They monitor and evaluate their progress and change course if necessary.
Older students might, depending on the context of the problem, transform algebraic expressions or change the
viewing window on their graphing calculator to get the information they need. Mathematically proficient students
can explain correspondences between equations, verbal descriptions, tables, and graphs or draw diagrams of
important features and relationships, graph data, and search for regularity or trends. Younger students might rely
on using concrete objects or pictures to help conceptualize and solve a problem. Mathematically proficient
students check their answers to problems using a different method, and they continually ask themselves, “Does
this make sense?” They can understand the approaches of others to solving complex problems and identify
correspondences between different approaches.’

Commentary from EDC’s Think Math! 2

The problems we encounter in the “real world”—our work life, family life, and personal health—don’t ask us what
chapter we’ve just studied and don’t tell us which parts of our prior knowledge to recall and use. In fact, they
rarely even tell us exactly what question we need to answer, and they almost never tell us where to begin. They
just happen. To survive and succeed, we must figure out the right question to be asking, what relevant experience
we have, what additional information we might need, and where to start. And we must have enough stamina to
continue even when progress is hard, but enough flexibility to try alternative approaches when progress seems
too hard.

The same applies to the real life problems of children, problems like learning to talk, ride a bike, play a sport,
handle bumps in the road with friends, and so on. What makes a problem “real” is not the context. A good puzzle
is not only more part of a child’s “real world” than, say, figuring out how much paint is needed for a wall, but a
better model of the nature of the thinking that goes with “real” problems: the first task in a crossword puzzle or
Sudoku or KenKen® is to figure out where to start. A satisfying puzzle is one that you don’t know how to solve at
first, but can figure out. And state tests present problems that are deliberately designed to be different, to require
students to “start by explaining to themselves the meaning of a problem and looking for entry points to its

solution.”

Mathematical Practice #1 asks students to develop that “puzzler’s disposition” in the context of mathematics.
Teaching can certainly include focused instruction, but students must also get a chance to tackle problems that
they have not been taught explicitly how to solve, as long as they have adequate background to figure out how to
make progress. Young children need to build their own toolkit for solving problems, and need opportunities and
encouragement to get a handle on hard problems by thinking about similar but simpler problems, perhaps using
simpler numbers or a simpler situation.

One way to help students make sense of all of the mathematics they learn is to put experience before formality
throughout, letting students explore problems and derive methods from the exploration. For example, students
learn the logic of multiplication and division—the distributive property that makes possible the algorithms we use
—before the algorithms. The algorithms for each operation become, in effect, capstones rather than foundations.

1 http://www.corestandards.org/Math/Practice
2 http://thinkmath.edc.org/index.php/CCSS_Mathematical_Practices
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Another way is to provide, somewhat regularly, problems that ask only for the analysis and not for a numeric
“answer.” You can develop such problems by modifying standard word problems. For example, consider this
standard problem:

Eva had 36 green pepper seedlings and 24 tomato seedlings. She planted 48 of them. How many more does she
have to plant?

You might leave off some numbers and ask children how they’d solve the problem if the numbers were known.
For example:

Eva started with 36 green pepper seedlings and some tomato seedlings. She planted 48 of them. If you knew
how many tomato seedlings she started with, how could you figure out how many seedlings she still has to plant?
(d add up all the seedlings and subtract 48.)

Or, you might keep the original numbers but drop off the question and ask what can be figured out from that
information, or what questions can be answered.

Eva had 36 green pepper seedlings and 24 tomato seedlings. She planted 48 of them. (I could ask “how many
seedlings did she start with?” and | could figure out that she started with 60. | could ask how many she didn’t
plant, and that would be 12. | could ask what is the smallest number of tomato seedlings she planted! She had to
have planted at least 12 of them!)

These alternative word problems ask children for much deeper analysis than typical ones, and you can invent
them yourself, just by modifying word problems you already have.
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2 Reason abstractly and quantitatively.

Mathematically proficient students make sense of quantities and their relationships in problem situations. They
bring two complementary abilities to bear on problems involving quantitative relationships: the ability to
decontextualize—to abstract a given situation and represent it symbolically and manipulate the representing
symbols as if they have a life of their own, without necessarily attending to their referents—and the ability to
contextualize, to pause as needed during the manipulation process in order to probe into the referents for the
symbols involved. Quantitative reasoning entails habits of creating a coherent representation of the problem at
hand; considering the units involved; attending to the meaning of quantities, not just how to compute them; and
knowing and flexibly using different properties of operations and objects.

Commentary from EDC’s Think Math!

This wording sounds very high—schoolish, but the same mathematical practice can be developed in elementary
school. Second graders who are learning how to write numerical expressions may be given the challenge of
writing numerical expressions that describe the number of tiles in this figure in different ways.

Given experience with similar problems so that they know what is being asked of them, students might write
1+2+3+4+3+2+1 (the heights of the stairsteps from left to right) or 1+ 3+ 5+ 7 (the width of the layers

from top to bottom) or 10 + 6 (the number of each color) or various other expressions that capture what they see.

These are all decontextualizations—representations that preserve some of the original structure of the display, but
just in number and not in shape or other features of the picture. Not any expression that totals 16 makes sense—
for example, it would seem hard to justify 2 + 14 —but a child who writes, for example, 8 + 8 and explains it as “a

sandwich”—the number of blocks in the middle two layers plus the number of blocks in the top and bottom—has
taken an abstract idea and added contextual meaning to it.

More generally, Mathematical Practice #2 asks students to be able to translate a problem situation into a number
sentence (with or without blanks) and, after they solve the arithmetic part (any way), to be able to recognize the
connection between all the elements of the sentence and the original problem. It involves making sure that the
units (objects!) in problems make sense. So, for example, in decontextualizing a problem that asks how many
busses are needed for 99 children if each bus seats 44, a child might write 99 - 44 . But after calculating 2 R 11

or 2i or 2.25, the student must recontextualize: the context requires a whole number answer, and not, in this

case, just the nearest whole number. Successful recontextualization also means that the student knows that the
answer is 3 busses, not 3 children or just 3.
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3 Construct viable arguments and critique the reasoning of others.

Mathematically proficient students understand and use stated assumptions, definitions, and previously
established results in constructing arguments. They make conjectures and build a logical progression of
statements to explore the truth of their conjectures. They are able to analyze situations by breaking them into
cases, and can recognize and use counterexamples. They justify their conclusions, communicate them to others,
and respond to the arguments of others. They reason inductively about data, making plausible arguments that
take into account the context from which the data arose. Mathematically proficient students are also able to
compare the effectiveness of two plausible arguments, distinguish correct logic or reasoning from that which is
flawed, and—if there is a flaw in an argument—explain what it is. Elementary students can construct arguments
using concrete referents such as objects, drawings, diagrams, and actions. Such arguments can make sense and
be correct, even though they are not generalized or made formal until later grades. Later, students learn to
determine domains to which an argument applies. Students at all grades can listen or read the arguments of
others, decide whether they make sense, and ask useful questions to clarify or improve the arguments.

Commentary from EDC’s Think Math!

As every teacher knows, children love to talk. But explanation—clear articulation of a sequence of steps or even
the chronology of events in a story—is very difficult for children, often even into middle school. To “construct a
viable argument,” let alone understand another’s argument well enough to formulate and articulate a logical and
constructive “critique,” depends heavily on a shared context, especially in the early grades. Given an interesting
task, they can show their method and “narrate” their demonstration. Rarely does it make sense to have them try
to describe, from their desks, an articulate train of thought, and even more rarely can one expect the other
students in class to “follow” that lecture any better than—or even as well as—they’d follow the train of thought of
a teacher who is just talking without illustrating. The standard recognizes this fact when it says “students can
construct arguments using concrete referents such as objects, drawings, diagrams, and actions.” The key is not
the concreteness, but the ability to situate their words in context—to show as well as tell.

To develop the reasoning that this standard asks children to communicate, the mathematical tasks we give need
depth. Problem that can be solved with only one fairly routine step give students no chance to assemble a mental
sequence or argument, even non-verbally. The inclination to “justify their conclusions” also depends on the
nature of the task: certain tasks naturally pull children to explain; ones that are too simple or routine feel
unexplainable. Depending on the context, “I added” can seem to a child hardly worth saying. And finally, skill at
“communicating [a justification] to others” comes from having plentiful opportunities to do so. The way children
learn language, including mathematical and academic language, is by producing it as well as by hearing it used.
When students are given a suitably challenging task and allowed to work on it together, their natural drive to
communicate helps develop the academic language they will need in order to “construct viable arguments and
critique the reasoning of others.”

One kind of task that naturally “pulls” children to explain is a “How many ways can you...” task.

How many ways can you make 28¢? (Variant: How many ways can you make 28¢ without using dimes or
quarters?)

How many different 5"-tall towers of 1" cubes can be made, using exactly one white cube and four blue cubes?
(Variant: How many different 5"—tall towers of 1" cubes can be made, using exactly two white cubes and three
blue cubes?)
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The first time young students face problems like these, they tend to be unsystematic. But after they have worked
problems like this two or three times, they tend to develop methods (not necessarily efficient or correct, though
often so). Then, faced with the question “How can you be sure there are no more?” most children, even as young
as second grade, are drawn to explain and do so readily.

Similarly, in the playful context of an imaginary island with two families—one that always tells the truth, and one
whose statements are always false—students can hardly stop themselves from explaining how they get answers
to questions like this:

You meet Adam and Beth. Adam says “We’re both from the family of liars.” Which family is Adam from? What
about Beth?

Children (and adults) typically find it far easier to solve the puzzle than to say how they solved it, but it’s also
typical for them, given the slightest “how’d you get that?,” to feel compelled to explain!

While young students can sometimes detect illogical arguments, it is not generally sensible to ask young students
to critique the reasoning of others, as it is often too hard for them to distinguish flaws in the logic of another
student’s argument from artifacts created by the difficulty all young students have in articulating their thinking
without ambiguity.
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4 Model with mathematics.

Mathematically proficient students can apply the mathematics they know to solve problems arising in everyday
life, society, and the workplace. In early grades, this might be as simple as writing an addition equation to
describe a situation. In middle grades, a student might apply proportional reasoning to plan a school event or
analyze a problem in the community. By high school, a student might use geometry to solve a design problem or
use a function to describe how one quantity of interest depends on another. Mathematically proficient students
who can apply what they know are comfortable making assumptions and approximations to simplify a complicated
situation, realizing that these may need revision later. They are able to identify important quantities in a practical
situation and map their relationships using such tools as diagrams, two—way tables, graphs, flowcharts and
formulas. They can analyze those relationships mathematically to draw conclusions. They routinely interpret their
mathematical results in the context of the situation and reflect on whether the results make sense, possibly
improving the model if it has not served its purpose.

Commentary from EDC’s Think Math!

The intent of this standard is not to pretend that “problems arising in [the] everyday life” of an adult would be of
educational value, let alone interest, to a child. The serious everyday-life problems that children face must be
solved by the adults who take care of them. Children, themselves, pay closest attention to learning how the world
around them works. What we call “play” is their work: they experiment, tinker, push buttons (including ours), say
and ask whatever comes to mind, all in an attempt to see what happens. And their curiosity naturally includes
ideas we call mathematics: thinking about size, shape and fit, quantity, number. Figuring out where to be to catch
a ball is not a paper—and—pencil calculation, but it certainly does involve attention to and rough quantification of
the speed, direction, and position of both the ball and oneself, as well as other mathematical ideas. Doing a
KenKen® puzzle is also an application of raw arithmetic skills to an everyday life problem, in the honest sense
that puzzling is very much an important part of the life of a child (and important enough even in the lives of adults
to assure that even supermarkets stock puzzle books).

One intent of this standard is to ensure that children see, even at the earliest ages, that mathematics is not just a
collection of skills whose only use is to demonstrate that one has them. Even puzzles suffice for that goal.

Another intent is to ensure that the mathematics students engage in helps them see and interpret the world—the
physical world, the mathematical world, and the world of their imagination—through a mathematical lens. One
way, mentioned in the standard, is through the use of simplifying assumptions and approximations. Children
typically find “estimation” pointless, and even confusing, when they can get exact answers, but many
mathematical situations do not provide the information needed for an exact calculation. The following problems
suggest two ways children might encounter situations like these in elementary school.

About how many children are in our school? 50? 200? 10007 To figure that out, we could count, but that’s a lot of
work. Besides, we don’t need to know exactly. How can we come reasonably close, just sitting here in our
classroom?

Sam Houston Elementary School has nearly 1,000 children from kindergarten through 5th grade, with about the
same number of students in each grade. No class has more than 25 students, but most classes are close to that.
What can you figure out from this information? (Adapted from Think Math! Grade 5.)

Both of these examples require “assumptions and approximation to simplify” and also the essential step of
“reflect[ing] on whether the results make sense.”
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What’s important here is not the context that’'s used, but the kind of thinking it requires. Using “approximations to
simplify a complicated situation” can be valuable even within mathematics and even when exact answers are
required. For example, students in 4th grade who are beginning to learn that there are many fractions equivalent
to 1/2 can quickly become competent, and inventive, at contributing entries to a table, on the board, with three
columns: fractions between 0 and 1/2, fractions equal to 1/2, and fractions between 1/2 and 1.

They can then apply what they know to simplify, cleverly, such “naked arithmetic” problems such as “Arrange the
fractions 4/9, 5/8, and 7/12 in order from least to greatest.” The comparison can be performed entirely without
calculating by noting, first, that 4/9 is less than 1/2 (because 4 is less than half of 9) and it is the only one that is
less than 1/2, so it is the smallest. The other two are both greater than 1/2, but 5/8 is one eighth greater than 1/2
whereas 7/12 is only one twelfth greater, so 5/8 is the largest. The point, of course, is not to replace one
technique with another. The point is that mathematical thinking simplifies the work.

A completely different kind of modeling involves spatial location: a map or diagram models the real thing. Even
children in K and 1 can lay out strips of paper in a grid on the floor, name the streets and avenues, place houses
and schools and libraries at various locations, and describe the distances and directions to get from one to
another.
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5 Use appropriate tools strategically.

Mathematically proficient students consider the available tools when solving a mathematical problem. These tools
might include pencil and paper, concrete models, a ruler, a protractor, a calculator, a spreadsheet, a computer
algebra system, a statistical package, or dynamic geometry software. Proficient students are sufficiently familiar
with tools appropriate for their grade or course to make sound decisions about when each of these tools might be
helpful, recognizing both the insight to be gained and their limitations. For example, mathematically proficient high
school students analyze graphs of functions and solutions generated using a graphing calculator. They detect
possible errors by strategically using estimation and other mathematical knowledge. When making mathematical
models, they know that technology can enable them to visualize the results of varying assumptions, explore
consequences, and compare predictions with data. Mathematically proficient students at various grade levels are
able to identify relevant external mathematical resources, such as digital content located on a website, and use
them to pose or solve problems. They are able to use technological tools to explore and deepen their
understanding of concepts.

Commentary from EDC’s Think Math!

To follow...
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6 Attend to precision.

Mathematically proficient students try to communicate precisely to others. They try to use clear definitions in
discussion with others and in their own reasoning. They state the meaning of the symbols they choose, including
using the equal sign consistently and appropriately. They are careful about specifying units of measure, and
labeling axes to clarify the correspondence with quantities in a problem. They calculate accurately and efficiently,
express numerical answers with a degree of precision appropriate for the problem context. In the elementary
grades, students give carefully formulated explanations to each other. By the time they reach high school they
have learned to examine claims and make explicit use of definitions.

Commentary from EDC’s Think Math!

The title is potentially misleading. While this standard does include “calculate accurately and efficiently,” its
primary focus is precision of communication, in speech, in written symbols, and in specifying the nature and units
of quantities in numerical answers and in graphs and diagrams.

The mention of definitions can also be misleading. Elementary school children (and, to a lesser extent, even
adults) almost never learn new words effectively from definitions. Virtually all of their vocabulary is acquired from
use in context. Children build their own “working definitions” based on their initial experiences. Over time, as they
hear and use these words in other contexts, they refine their working definitions and make them more precise.
For example, the toddler’s first use of “doggie” may refer to all furry things, and only later be applied to a narrower
category. In mathematics, too, children can work with ideas without having started with a precise definition. With
experience, the concepts will become more precise, and the vocabulary with which we name the concepts will,
accordingly, carry more precise meanings. Formal definitions generally come last. Children’s use of language
varies with development, but typically does not adhere to “clear definition” as much as to holistic images. That is
one reason why children who can state that a triangle is a closed figure made up of three straight sides may still

choose

as a better example of a triangle than

because it conforms more closely to their mental image of triangles, despite its failure to meet the definition they
gave.

Curriculum and teaching must be meticulous in the use of mathematical vocabulary and symbols. For example,
when students first see the = sign, it may be used in equations like 5 =3+ 2, orin contexts like 9+ __ =842,

in each case making clear that it signals the equality of expressions, and is not merely heralding the arrival of an
answer. Teacher Guide information about vocabulary must be clear and correct, and must help teachers
understand the role of vocabulary in clear communication: sometimes fancy words distinguish meanings that
common vocabulary does not, and in those cases, they aid precision; but there are also times when fancy words
camouflage the meaning. Therefore, while teachers and curriculum should never be sloppy in communication, we
should choose our level of precision strategically. The goal of precision in communication is clarity of
communication.
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Communication is hard; precise and clear communication takes years to develop and often eludes even highly
educated adults. With elementary school children, it is generally less reasonable to expect them to “state the
meaning of the symbols they choose” in any formal way than to expect them to demonstrate their understanding
of appropriate terms through unambiguous and correct use. If the teacher and curriculum serve as the “native
speakers” of Clear Mathematics, young students, who are the best language learners around, can learn the
language from them.
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7 Look for and make use of structure.

Mathematically proficient students look closely to discern a pattern or structure. Young students, for example,
might notice that three and seven more is the same amount as seven and three more, or they may sort a
collection of shapes according to how many sides the shapes have. Later, students will see 7 x 8 equals the well

remembered 7 x5+ 7 x 3, in preparation for learning about the distributive property. In the expression

x? 4+ 9x + 14, older students can see the 14 as 2x 7 and the 9 as 2+ 7. They recognize the significance of an

existing line in a geometric figure and can use the strategy of drawing an auxiliary line for solving problems. They
also can step back for an overview and shift perspective. They can see complicated things, such as some
algebraic expressions, as single objects or as being composed of several objects. For example, they can see

2
5— 3(x - y) as 5 minus a positive number times a square and use that to realize that its value cannot be more

than 5 for any real numbers x and y.

Commentary from EDC’s Think Math!

Children naturally seek and make use of structure. It is one of the reasons why young children may say “foots” or
“policemans,” which they have never heard from adults, instead of feet or policemen, which they do hear. They
induce a structure for plurals from the vast quantity of words they learn and make use of that structure even
where it does not apply.

Mathematics has far more consistent structure than our language, but too often it is taught in ways that don’t
make that structure easily apparent. If, for example, students’ first encounter with the addition of same-
denominator fractions drew on their well-established spoken structure for adding the counts of things—two sheep
plus three sheep makes five sheep, two hundred plus three hundred makes five hundred, and two wugs plus
three wugs makes five wugs, no matter what a wug might be—then they would already be sure that two eighths
plus three eighths makes five eighths. Instead, they often first encounter the addition of fractions in writing, as 2/8
+ 3/8, and they therefore invoke a different pattern they’ve learned—add everything in sight—resulting in the
incorrect and nonsensical 5/16. Kindergarteners who have no real idea how big “hundred” or “thousand” are
(though they’ve heard the words) are completely comfortable, amused, and proud to add such big numbers as
“two thousand plus two thousand” when the numbers are spoken, even though children a year older might have
had no idea how to do “2000 + 3000” presented on paper.

This CCSS standard refers to students recognizing that “7 x 8 equals the well-remembered 7 x 5 + 7 x 3.” Array
pictures help (see MP standard 5, “Use appropriate tools strategically”), but so does students’ linguistic
knowledge, if the connection is made. The written symbols 5x7 + 3x7 = 8x7 are very compact, but the meaning
they condense into just eleven characters is something that students understood well even before they learned
multiplication. Before they have any idea what a collection of sevens is, they know that five of them plus three of
them equals eight of them. It’s just five wugs plus three wugs again.

“Standard arithmetic” can be taught with or without attention to pattern. The CCSS acknowledges that students
do need to know arithmetic facts, but random-order fact drills rely on memory alone, where patterned practice
can develop a sense for structure as well. Learning to add 8 to anything—not just to single digit numbers—by
thinking of it as adding 10 and subtracting 2 can develop just as fast recall of the facts as random—order practice,
but it also allows students quickly to generalize and add 18 or 28 to anything mentally. The structure is a general
one, not just a set of memorized facts, so students can use it to add 19 or 39, or 21 or 41, to anything, too. With a
bit of adjustment, they can use the same thinking to subtract mentally. This is, of course, exactly the way we hope
students will mentally perform 350 — 99.

Structure allows sensible definition of odd and even: pairs with or without something left over.
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In elementary school, attention to structure also includes the ability to defer evaluation for certain kinds of tasks.
For example, when presented with 7 +5 I:I 7+ 4 and asked tofill in <,=, or > to compare the two expressions,
second graders are often drawn—and may even be explicitly told—to perform the calculations first. But this is a
situation in which we want the students’ attention on the structure, & + 5 D a+4oreven W +5 |:| \ 4,

rather than on the arithmetic.

Without any reference to symbols “standing for” numbers, which might well be distracting or even confusing to
second graders, they readily see that ‘ +5> ‘ + 4 if the same number is under each hand. This same skill of
deferring evaluation—putting off calculation until one sees the overall structure—helps students notice that they

don’t have to find common denominators for IZ — % +3+ i —% but can simply rearrange the terms to make such

a trivial computation that they can do it in their heads. When students begin to solve algebraic equations, the
same idea will help them notice that 3(5x — 4) + 2 =20 can be treated as “something plus 2 equals 20” and

conclude, using common sense and not just “rules,” that 3(5x — 4) =18.

3(5x—4) +

()
\

20

-

ro
\

20

)

4

From such reasoning, they can learn to derive rules that make sense.
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8 Look for and express regularity in repeated reasoning.

Mathematically proficient students notice if calculations are repeated, and look both for general methods and for
shortcuts. Upper elementary students might notice when dividing 25 by 11 that they are repeating the same
calculations over and over again, and conclude they have a repeating decimal. By paying attention to the

calculation of slope as they repeatedly check whether points are on the line through (1,2) with slope 3, middle
school students might abstract the equation (y — 2) / (x — 1) = 3. Noticing the regularity in the way terms cancel

when expanding (x— 1)(x+ 1), (x —1)(x2 +x+ 1), and (x— 1)(x3 +xt 4+ x+ 1) might lead them to the general

formula for the sum of a geometric series. As they work to solve a problem, mathematically proficient students
maintain oversight of the process, while attending to the details. They continually evaluate the reasonableness of
their intermediate results.

Commentary from EDC’s Think Math!

A central idea here is that mathematics is open to drawing general results (or at least good conjectures) from
trying examples, looking for regularity, and describing the pattern both in what you have done and in the results.

A multiplication fact—-practice exercise might, for example, ask children to choose three numbers in a row (e.g., 5,
6, and 7) and compare the middle number times itself to the product of the two outer numbers. In this example,
the two products are 36 and 35. After they do this for several triplets of numbers, they are likely to conjecture a
pattern that allows them to multiply 29 x 31 mentally because they expect it to be one less than 30 x 30, which

they can do easily in their heads. Seeing that regularity is typically easy for fourth graders; expressing it clearly is
much harder. Initial attempts are generally inarticulate until students are given the idea of naming the numbers. A
simple non—algebraic “naming” scheme was used above to describe the pattern: the numbers were named
“middle” and “outer” and that was sufficient. A slightly more sophisticated scheme would distinguish the outer
numbers as something like “middle plus 1” and “middle minus 1.” Then children can state

(middle - 1) x (mz'ddze + 1) = middle* —1

The step from this statement to standard algebra is just a matter of adopting algebraic conventions: naming
numbers with a single letter like m instead of a whole word like “middle,” and omitting the x sign.

The recognition that adding 9 can be simplified by treating it as adding 10 and subtracting 1 can be a discovery
rather than a taught strategy. In one activity—there are obviously many other ways of doing this—children start,
e.g., with 28 and respond as the teacher repeat only the words “ten more” (38), “ten more” (48), “ten more” (58),
and so on. They may even be counting, initially, to verify that they are actually adding 10, but they soon hear the
pattern in their responses (because no other explanatory or instruction words are interfering) and express that
discovery from their repeated reasoning by saying the 68, 78, 88 almost without even the request for “ten more.”
When, at some point, the teacher changes and asks for “9 more,” even young students often see it as “almost ten
more” and make the correction spontaneously. Describing the discovery then becomes a case of “expressing
regularity” that was found through “repeated reasoning.” Young students then find it very exciting to add 99 the
same way, first by repeating the experience of getting used to a simple computation, adding 100, and then by
coming up with their own adjustment to add 99.
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